Modes and Mechanisms of Game-like Interventions in Intelligent Tutoring Systems

Dovan Rai

Department of Computer Science Worcester Polytechnic Institute

Joseph E. Beck Ivon Arroyo Charles Rich Kristen Dicerbo

Educational Technology

Games

Intelligent Tutoring Systems

Rich experiences !

- Cognitive Overload
- Design Constraints
 - Time Constraints
- Resource Constraints

Learning gain !

Intelligent

Tutoring Systems

Can they provide adequate platform for rich learning experiences?

Integrate Game and Tutors ?

Game-like Interventions in Intelligent Tutoring Systems

Deconstruction of Games

Game-like Interventions

Modes and Mechanisms of Game-like Interventions In Intelligent Tutoring Systems

Research Questions

1. What are different MODES of game-like interventions?

2. What are the MECHANISMS of learning outcomes in game-like interventions?

What are the different ways we can have game-like interventions in computer tutors?

games

games

games

game-like interventions

EXPERIMENTS

Monkey's Revenge game-like math tutor

I. Pilot study (N=58)

Modified intervention

- 2. Pilot study (N=39)
- 3. RCT (N=297)

Modified intervention

Modified study design

4. RCT (N=252)

Learning Dashboard Gamification

- I. Pilot study (N=58)
- 2. RCT (N=39)

improved intervention

Modified study design

3. RCT (N=252)

Improved intervention

RCT (N=186)

Mosaic

Mini-games

Monkey's Revenge game-like math tutor

Math problems wrapped in a visual narrative

MONKEY'S REVENCE Sarah He is tied to a stick at (8,0). If the length of the rope is 5 units, find the place where he cannot reach the banana? (10,0) 💓 (13,0) 💓 (4,0) (2,0) Show Hint'I of 3': 9 8 Oops! Pepe can reach here. He can reach anywhere on the ground with xcoordinate between 3 and 13. Try again. 7 Sorry. Pepe can reach here. He can reach anywhere on ground with x-coordinate between 3 and 13. Try again. 6 5 4 3 2 1 X-> (0.0)10 11 12 14 15 16 17 18 19 20 8-5=3 (8.0)

Game Elements

Game-like Math Tutor

Experiments with Monkey's Revenge

I. Pilot study (N=58)

Modified intervention

- 2. Pilot study (N=39)
- 3. RCT (N=297)

Modified intervention

Modified study design

4. RCT (N=252)

EXPERIMENT DESIGN

Tutor version	Visual feedback	Narrative	Other game-like elements
Monkey's Revenge	~	~	
without visual feedback	×	~	
without narrative	~	×	
Basic tutor	×	×	×

Hypothesis

Can game-like tutor

enhance student's enjoyment? generate higher learning gain?

WITHOUT

creating cognitive overload and taking too much time away from practice

Is it engaging? (Liking and satisfaction)Is it effective? (learning gain)Is it efficient? (time overload? cognitive overload?)

Is it engaging? (Liking and satisfaction)

Survey Responses across tutors (means and 95% CI)

Tutor version	Like tutor	Had fun	Tutor helped	Better
Monkey's Revenge	4.0 ±0.3	4.1 ±0.4	3.9 ±0.3	3.9 ±0.3
without visual feedback	3.9 ±0.4	3.9 ±0.4	3.6 ±0.4	3.7 ±0.4
without narrative	3.6 ±0.5	3.3 ±0.5	3.2 ±0.5	3.8 ±0.5
Basic tutor	3.0 ±0.5	3.0 ±0.5	3.1 ±0.5	3.4 ±0.5

Students liked the system.

They showed more liking of the tutor version

with game-like elements.

Is it effective? (learning gain)

learning gain across tutors (means and 95% CI)

Tutor	Pretest percent correct	Learning gain	
Monkey's Revenge	66%	10% ± 9%	
without visual feedback	69%	5% ± 7%	
without narrative	70%	7% ± 8%	
Basic tutor	74%	3% ± 7%	

Is it efficient? (cognitive overload?)

Student performance across tutors (means and 95% CI)

Tutor	Pretest percent correct	Problems correct in the tutor (max=27)
Monkey's Revenge	68%	20.3 ±1.1
without visual feedback	64%	19.8 ±2
without narrative	70%	18.6 ±1.2
Basic tutor	74%	18.5 ±1.5

We did not have a robust way to measure cognitive load. But at least, cognitive overload and distraction is not obstructing students in game-like version to perform well within the tutor.

Is it efficient? (time overload?)

Tutor	Total time (in minutes)	Non-tutor time (in minutes)
Monkey's Revenge	50	10
without visual feedback	47	13
without narrative	42	9
Basic tutor	56	5

Conclusions

Can game-like tutor

enhance student's enjoyment? YES generate higher learning gain? no conclusion

without creating cognitive overload and taking too much time away from practice seems yes

Limitations and Future Work

No conclusive results on learning gains !

Possible reasons are:

Intervention was brief Involved variety of skills

A lot of kids did not complete the post-test.

The large standard error suggests students were not taking the test seriously

Extend intervention for multiple sessions.

game-like interventions

Learning Dashboard gamification

MathSpring: Intelligent Tutoring System

Nome

Learning Dashboard

Math Tree Student Progress Page (SPP) Topic Details

MATHSPRING Dashboard

Damyan D | Log Out

Start Working

My Progress

Hi Damyan,

Welcome to MathSpring!

You are given this baby tree. It will grow as you practice math problems and learn. There are hints, examples and videos to help you learn to solve the problems. Do you want to see how your tree may look like in future?

Show me the tree

Have a good time working on these math problems !

MATHSPRING Dashboard

Damyan D | Log Out

Start Working

My Progress

Welcome back!

You had logged in 27 days ago. You have solved 37 problems so far. You have already mastered 3 topics. You also mastered 1 topic in that session.

You can see how you have progressed over days of

Day 1	Day 2	Day 3	Day 4	Day 5	Day 6

Have a good time working on these math problems !

Student Progress Page (SPP)

ΜΑΤΗ ΣΡΙ	RING	My Progress	« Go ba	ick to Tutor
Topic	Progress 🗭	Performance 🤛	Remarks 🗭	Actions
Fractions Identification		Mastery Level	You got the last problem correct on first attempt. Keep up the good work and you can soon get the mastery. Comment >	Continue »
		Problems Done : 4/6 Learn More >		« Review Challenge
		Mastery Level	As you put more effort on solving the problems, the baby pepper plant grows to give pepper fruits.	
Addition/Subtraction		10		Continue »
of Fractions		Problems Done : 5/7 Learn More >		« Review Challenge
	-	Mastery Level	Untried topic- Would you like to try this topic now?	
Multiplication/Division		0	Comment >	Try this »
of Fractions		Problems Done : 0/7 Learn More >		
	Mastery Level 59 Problems Done : 4/ Learn More >	Mastery Level	If you do not put effort on solving the problems, but rather keep guessing and giving up and not reading carefully, the plant wilts.	
Devise show		59		Continue »
Perimeter		Problems Done : 4/12 Learn More >		« Review Challenge

Student Progress Page (SPP)

MATH	SPRING	Progress	« Go ba	ick to Tutor
Topic	EFFORT	MASTERY	Remarks 🗭	Actions
Fractions Identification		Mastery Level 38 Problems Done : 4/6 Learn More >	ou got the last problem correct on first attempt. Keep up the good work and you can soon get the mastery.	Continue » « Review Challenge
Addition/Subtract of Fractions	ion	Mastery Level Problems Done : 5/7 Learn More >	As you put more effort on solving the problems, the baby pepper plant grows to give pepper fruits.	Continue » « Review Challenge
Multiplication/Div of Fractions	ision	Mastery Level 0 Problems Done : 0/7 Learn More >	Untried topic- Would you like to try this topic now?	Try this »
Perimeter		Mastery Level 59 Problems Done : 4/12 Learn More >	If you do not put effort on solving the problems, but rather keep guessing and giving up and not reading carefully, the plant wilts.	Continue » « Review Challenge
Pepper plants : representation of effort

Effort → Pepper plant grows

No Effort \rightarrow Pepper plant wilts

Hypothesis

Providing meta-cognitive support through the SPP will generate cascading effects:

 \rightarrow enhance students' affective state

→ which should increase student engagement and productive behaviors such as spending time on help, which should lead to higher learning

Experiments with Learning Dashboard (SPP)

I. Pilot study (N=58)

2. RCT (N=39)

3. RCT (N=252)

Experimental Groups

{When students show negative affect}

Experiment and Results

Grade 7 (N = 209) California

3 consecutive class sessions

MathSpring prompted students to self-report their affect

"How interested are you feeling right now?" Not at all interested (1) ... somewhat interested (3) ... extremely interested (5)

Does the SPP Impact Student Affect?

{on negative affect}

NO SPP	SPP	SPP	SPP
SPP button	SPP button	PROMPT	FORCE
not present		SPP	SPP

Excitement	2.5	2.6	2.6	2.8
Interest	2.7	2.7	2.7	2.5

No Conclusion

Is SPP usage associated with Positive Affect?

{on negative affect}

NO SPP	SPP	SPP	SPP
SPP button	SPP button	PROMPT	FORCE
not present		SPP	SPP

Is SPP usage associated with Positive Affect?

MathSpring encouraged SPP usage in two of the conditions (prompt and force) when low interest or low excitement was self reported.

		{on negative affect}		
NO SPP	SPP	SPP	SPP	
SPP button not present	SPP button	PROMPT SPP	FORCE SPP	

Interest was positively associated with SPP usage (r = .24, p = .023) Excitement also was positively associated with SPP but this did not reach significance (r = .13, p = .26).

Interest was positively associated with SPP usage (r = .24, p = .023) Excitement also was positively associated with SPP but this did not reach significance (r = .13, p = .26).

NO SPP	SPP	SPP usage \rightarrow positive affect ? or	
SPP button not present	SPP button	positive affect \rightarrow SPP usage ?	
		controlled for students'	
		pre-existing affect as derived	
		from the pre-affect survey	

SPP usage \rightarrow positive affect ? or positive affect \rightarrow SPP usage ?

controlled for students' pre-existing affect as derived from the pre-affect survey

Interest was still significantly associated with SPP usage (r = .25, p = .036)

NO SPP

SPP button

not present

SPP

SPP button

Excitement (r = .14, p = .3)

How do Conditions Impact Affective State Transitions?

(e.g., if they got "stuck" in the negative deactivating states)

How do Conditions Impact Affective State Transitions?

Models created by Wixon and Kasia

Visual representation of the high-level path models for excitement in the no-button, prompt and force conditions from left to right, respectively

SPP is affectively beneficial for students,

Promoting Excitement,

&

Decreasing the likelihood of paths that lead to Boredom.

Limitations and Future Work

From personal observation of experimenters and teachers, students seem to enjoy SPP

We need better metrics to measure student affect and engagement

Make SPP more accurate and intuitive.

Longer study !

game-like interventions

LONDON

LONDON

MANHATTAN

MANHATTAN

Game as affective repair

After playing mini-games, students come back to tutor with better affect.

Experimental Groups

N=60 N=62 N=64

Experiment and Results

Grade 7 students (N = 186)

MathSpring prompted students to self-report their affect

"How interested are you feeling right now?" Not at all interested (1) ... somewhat interested (3) ... extremely interested (5)

Hypothesis

Do mini-games

enhance student affect ? enhance student enjoyment and perception of tutor ?

Improve their engagement as a result of repaired affect?

Self-report on their experience in Mathspring; Students in different experimental groups

Group	Total participants	Participants with complete survey	Performed well (max 5)	Learned a Lot (max 5)	Enjoy using Mathspring (max 5)
No Mosaic	60	34	3.3 (1)	2.3 (1.1)	2.6 (1.2)
Prompt Mosaic	62	42	3.5 (1.2)	2.5 (1)	2.9 (1.2)
Force Mosaic	64	41	3.4 (1.4)	2.4 (1.2)	2.9 (1.3)

Self-report on their experience in Mathspring; Students who used Mosaic and who did not use Mosaic

Group	Total participants	Participants with complete survey	Performed well (max 5)	Learned a Lot (max 5)	Enjoy using Mathspring (max 5)
Did not use Mosaic	88	54	3.11	2.17	2.57
Used Mosaic	98	63	3.59	2.62	3.08
p-value			0.04*	0.03*	0.02*

Interest and Frustration averaged over participants who used and did not use Mosaic

Group	Interest (max 5)	Frustration (max 5)	Participants who skipped affect survey
Did not use Mosaic (N=88)	2.4 (N=55)	2.5 (N=66)	16 (18%)
Used Mosaic (N=98)	2.5 (N=65)	2.4 (N=60)	10 (10%)
p-value	0.4	0.08	

Limitations and Future Work

The whole experiment was only for a single class session.

The intervention was brief and affect sampling inadequate.

2. What are the MECHANISMS of learning outcomes in game-like interventions?

Causal Modeling is contested and not a widely used with educational technology community.

Therefore, we made a case study first to analyze and understand this approach.

We are using Causal modeling as an **Exploratory** tool rather than a **Confirmatory** one.

Causal Modeling Tool

TETRAD

http://www.phil.cmu.edu/tetrad/

Doug Selent's enhancement

https://sites.google.com/site/dougstetrad/tetrad

Causal modeling on Monkey's Revenge

Causal modeling on Mathspring SPP

Causal modeling on Mosaic

Causal modeling on Mathspring SPP

We created variables from survey data

Samples:

MathLike : Do you like your math class?

IntePre: In general, do you feel interested when solving math problems?

AnxiPre: Do you get anxious while solving math problems?

DiffConcentration: Do you have difficulty concentrating?

enjoyMathSpring: I enjoyed using the system.
Student State variables

Student State	Description
SOF	Solved on first attempt without help
ATT	Answered after 1-2 incorrect attempts and self- corrected, without help.
SHINT	Answered with the use of some help, but not all, in at most 2 attempts.
GUESS	Answered after several attempts, more than 2 attempts
NOTR	Not enough time to read
GIVEUP	Enough time to read, but moved on before answering.

INTE: average value for "How Interested are you?"

EXC: average value for "How excited are you?"

SPP: number of times SPP accessed by student

Clusters of variables

- Positive Learning vs. Negative learning behavior
- Performance Oriented vs. Enjoyment Oriented

Positive learning vs. negative learning behavior

Positive learning vs. negative learning behavior

Assignment of these clusters are logical demarcation based on our domain knowledge rather than actual statistical distinction.

Positive Learning behavior

Negative Learning behavior Effort (SOF, SHINT, ATT)

Pepper plant grows

No Effort (NOTR, GUESS, SKIP, GIVEUP)

Pepper plant wilts

➔

Enjoyment Oriented vs. Performance Oriented

Enjoyment Oriented

students who used more tutor help (SHINT) reported enjoying the system more (enjoyedSystem), finding the tutor more helpful (tutorHelpful) and being more excited (EXC) and interested (INTE).

Performance Oriented

students who found math difficult (mathDifficult) solved less problems correctly in the first attempt **(SOF)**, reported higher anxiety (AnxiPre) and higher frustration (frusPre)⁸⁰

MATH	SPRING My	Progress	« Go back to Tutor		
Topic	EFFORT	MASTERY	Remarks 🗭	Actions	
Fractions Identification		Mastery Level 38 Problems Done : 4/6 Learn More >	ou got the last problem correct on first attempt. Keep up the good work and you can soon get the mastery.	Continue » « Review Challenge	
Addition/Subtract of Fractions	tion	Mastery Level Problems Done : 5/7 Learn More >	As you put more effort on solving the problems, the baby pepper plant grows to give pepper fruits.	Continue » « Review Challenge	
Multiplication/Div of Fractions	ision	Mastery Level 0 Problems Done : 0/7 Learn More >	Untried topic- Would you like to try this topic now?	Try this »	
Perimeter		Mastery Level 59 Problems Done : 4/12 Learn More >	If you do not put effort on solving the problems, but rather keep guessing and giving up and not reading carefully, the plant wilts.	Continue » « Review Challenge	

$SOF \rightarrow Mastery$ SHINT \rightarrow Effort

Special pepper plants as reward

Monster Pepper

SOF-SOF sequences Exceptional Knowledge

Rainbow Pepper

SHINT-SOF sequences Exceptional Help Usage

Modes and Mechanisms of Game-like Interventions In Intelligent Tutoring Systems

Conclusions

Major Limitations

- Lack of Usability studies
- Short Intervention duration
- Inadequate Study design (objective robust measures other than surveys)

Conclusions

Experimental data and classroom observations indicate that we are on the right path of creating optimal game-like interventions.

We need longer intervention duration and more robust study design to generate evidence that our interventions can enhance both enjoyment and learning gains.

What's the next optimal combination of tutors and games?

Intelligent Tutoring Systems

Students enter games with prior knowledge of the content.

Games as assessment tools

We can focus on creating rich learning experiences within an educational game while intelligent tutoring systems take care of providing robust learning

Thank You !

MATHSPRING UMassAmherst

